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1. INTRODUCTION

Different techniques have been developed to compute compressible low-Mach number
flows. Reviews can be found in [1, 2]. To overcome the stiffness of the equations that appears
for small Mach numbers, one can use preconditionning, implicit or semi-implicit methods,
flux-vector splittings, or multigrid methods. False-transient methods, based on the artificial
compressibility technique [3] and originally developed for incompressible flows [4], have
also been extended to compressible flows using a low-Mach formulation of the equations [5].
However, these techniques have been rarely applied to combustion simulations where high
density and temperature variations, a stiff energy source term, and real gas properties make
the coupling between the energy, momentum, and continuity equations complex and difficult
to capture. The application of compressible low-Mach number techniques to combustion
problems is therefore not straightforward, and specific scaling methods have been developed
[6, 7]. However, these methods also imply a modification of the conservation equations,
which may raise some difficulties in complex configurations.

We propose here a simple method to efficiently accelerate convergence of flame computa-
tions,without changing the nature of the full compressible conservation equations and their
coupling. Following the same idea as preconditioning and pressure scaling methods, the
acoustic characteristic time is artificially reduced to become of the order of the convective
time, butno simplification of the equations is made. The originality of this method is that it
modifies the characteristic time of the the unsteady coupling between the flame and the flow
but does not affect the nature of the coupling and leaves the steady solution unchanged.
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2. METHODOLOGY

The idea of the proposed method is to decelerate acoustic waves while keeping the time
evolution of the flame unchanged. This is simply done by running the calculation at an
artificially reduced pressureP∗ = P/α2, whereα is the acceleration factor, without modi-
fying the temperature or the density (so that the equation of state now readsP∗ = ρrT/α2).
The corresponding sound speedc∗ = √γ P∗/ρ = c/α is therefore reduced, leading to a
greater CFL-based time stepdt∗ = αdt. This is quite different from false-transient methods
where the pressure scaling appears only in the artificial pressure time-derivative term, added
to the energy equation [5] (or the continuity equation in incompressible flows [3]), in order
to allow the use of time-marching algorithms. The present scaling technique is closer to the
method of [7], with the difference that we do not use the low-Mach number approximation.

IntroducingP∗ into the Navier–Stokes equations does not modify the continuity and mass
fractions equations. On the other hand the momentum and pressure (or internal energy)
equations take the form
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whereτi j is the stress tensor,8ν the viscous dissipation function, anḋQ any other source
term (chemical heat release in combustion). It appears in these equations that simply re-
placingP by P∗ leads to a modified steady solution because of the scaling byα2 of some
but not all terms of the right hand side (RHS). To avoid this we modify the RHS and solve
for the following reduced equations (combined with the non-modified continuity and mass
fractions equations),(

∂Ui

∂t

)∗
= − 1

α2
U j
∂Ui

∂xj
− 1

ρ

∂P∗

∂xi
+ 1

α2

1

ρ

∂τi j

∂xj

∂P∗

∂t
= −γ P∗

∂U j

∂xj
−U j

∂P∗

∂xj
+ γ − 1

α2

[
∂

∂xj

(
λ
∂T

∂xj

)
+8ν + Q̇

]
so that (

∂U

∂t

)∗
= 1

α2

∂U

∂t
,

∂P∗

∂t
= 1

α2

∂P

∂t
.

Integrating this reduced system in time gives

dρ∗ = ∂ρ

∂t
dt∗ = αdρ, dU∗ =

(
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dt∗ = dU/α

d P∗ = ∂P∗
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dt∗ = d P/α, dY∗ = ∂Y

∂t
dt∗ = αdY

dT∗ = α2d P∗/ρr − α2dρ∗P∗/ρ2r = αdT.

The density, temperature, and mass fractions are advanced in time with an acceleration factor
α, while the dynamics variablesU andP are advanced in time with a deceleration factorα.
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The steady state solution obtained with this reduced system is unchanged compared to the
original system as only time derivatives have been modified (only the LHS terms for the
reduced momentum and pressure equations are scaled by 1/α2 as compared to the original
terms). Finally, the modifications of the conservation equations to yield the reduced system
are the following:

• Continuity, no modification
• Velocity, divide the convective term and the viscosity byα2

• Pressure, divide the viscosity, thermal conductivity, and source term byα2

• Mass fraction, no modification.

Note that the equation of state must be modified too.
The maximum convergence acceleration will be obtained when the CFL time step be-

comes of the order of the other limiting time steps, namely the chemical time step and the
Fourier time step. Note that there is no such limitation as low-Mach number or low density
ratio, which is the case for low-Mach formulations, as long as only steady solutions are
looked for. The application of the proposed method to unsteady computations is however
restricted to low-Mach number flows for which the speed of sound has a negligible impact.

3. IMPLEMENTATION

Usually CFD compressible codes solve for density, momentum, total energy, and mass
fractions in conservative dimensional or non-dimensional form. Due to the unchanged
continuity equation, the conservative form of the momentum equation introduces a new
term when using convergence acceleration, leading to(
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The total energy is calculated normally,ρe∗t = ec + P∗/(γ − 1), and the total energy equa-
tion, in conservative form, can be directly written from the momentum and pressure equa-
tions. We obtain(
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Note that the additional term in both equations is proportional to the divergence of momen-
tum: this term can be omitted without perturbing the final steady solution.

The practical implementation is very simple: the only changes made to the code are the
scaling of the convective terms in the momentum and energy equations and the modification
of the equation of state. The diffusion and source terms in the energy and total energy
equations can be simply reduced by dividing the viscosity and thermal conductivity as well as
heat releaseQ byα2. For non-dimensional formulations, the diffusive terms are reduced by
multiplying the Reynolds number byα2. Note that if the species diffusivities are calculated
through Schmidt numbers, these numbers have to be divided byα2 so that the product
Re·Scdoes not change. Finally one has to keep in mind that the calculations are done at
a pressure level artificially lowered, which must be rescaled to get the true pressure level of
the final solution. Boundary conditions also have to be rescaled to adapt to the lower pressure.
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FIG. 1. Configuration and reaction rate contours of the steady two-dimensional diffusion flame.

As the nature of the equations remains unchanged, the numerical discretization schemes
and boundary conditions treatment can be applied without modification.

4. VALIDATION

Validation tests have been conducted using a finite volumes, unstructured code (AVBP)
developed at CERFACS [8, 9]. One-dimensional and two-dimensional flames have been
calculated, with and without convergence acceleration.

A stationary, one-dimensional premixed methane–air flame was calculated with a con-
vergence acceleration factorα2= 100, then compared to the standard calculation. Both final
steady solutions were extremely close, and it took about ten times less iterations to reach
the same level of convergence (in terms of residuals).

We show here only the second test case, a two-dimensional stabilized diffusion flame.
Figure 1 shows the configuration and the calculated steady solution. Three different streams
are injected at inlet: a fuel stream, an oxidizer stream, and a hot products stream. The flame is
stabilized by the hot stream, as shown in [10]. The simulation presented here was conducted
on a 100× 200 grid, refined around the flame location. We used simple chemistry (only two
species were computed), and an inlet velocity of 72 cm/s. For convergence acceleration we
have usedα2= 100. Residuals of the different variables are plotted versus time in Fig. 2.
Both calculations correspond to the same number of iterations. The accelerated calculation
goes much further in time than the standard calculation in the same number of iterations (the
time step is multiplied by 10): before 600 iterations the accelerated calculation has already
seen the flame ignition (corresponding to the peak in all curves), whereas the standard
calculation is still in the phase where all profiles are only diffusing. The time evolution

FIG. 2. Log of the residuals of the conservative variables vs time non-dimensionalized with the acoustic
time L/c.
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FIG. 3. Log of the residuals of the conservative variables vs the number of iterations.

of the residuals of density and mass fractions is unchanged, as we did not modify the
corresponding equations. Residuals for momentum and energy behave quite differently.
They can be understood by plotting them against the number of iterations (Fig. 3). The
last (600th) iteration of the standard computation corresponds to the same physical time as
the 60th iteration of the accelerated computation, so that residuals for all variables differ
significantly after iteration 60. Before this point, and as expected from the derivation of
the method, residuals for dynamic variables (momentum and energy) are smaller whith
convergence acceleration (initially by a factorα2 for energy andα for momentum), but the
slopes are the same: the gain is not here. However, residuals for density and mass fractions,
starting at the same level, drop much faster with the accelerated method.

5. CONCLUSION

We have shown that steady combustion simulations can be drastically accelerated by
modifying the characteristic time scale of the acoustics, while keeping the full compress-
ible conservation equations. The implementation in codes is very simple and requires only
some minor modifications on the convective terms and the boundary conditions. Conver-
gence acceleration has been successfully obtained on one-dimensional and two-dimensional
flame calculations, with a speed-up of the order of 10. In theory, typical speed-up can go up
to 100, which is the order of magnitude of the ratio of sound speed to usual flame speeds.
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