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1. INTRODUCTION

Different techniques have been developed to compute compressible low-Mach nur
flows. Reviews can be found in [1, 2]. To overcome the stiffness of the equations that app:
for small Mach numbers, one can use preconditionning, implicit or semi-implicit methoc
flux-vector splittings, or multigrid methods. False-transient methods, based on the artifi
compressibility technique [3] and originally developed for incompressible flows [4], hay
also been extended to compressible flows using alow-Mach formulation of the equations
However, these techniques have been rarely applied to combustion simulations where
density and temperature variations, a stiff energy source term, and real gas properties r
the coupling between the energy, momentum, and continuity equations complex and diffi
to capture. The application of compressible low-Mach number techniques to combust
problems is therefore not straightforward, and specific scaling methods have been devel
[6, 7]. However, these methods also imply a modification of the conservation equatio
which may raise some difficulties in complex configurations.

We propose here a simple method to efficiently accelerate convergence of flame comg
tions,without changing the nature of the full compressible conservation equations and th
coupling Following the same idea as preconditioning and pressure scaling methods,
acoustic characteristic time is artificially reduced to become of the order of the convect
time, butno simplification of the equations is madéne originality of this method is that it
modifies the characteristic time of the the unsteady coupling between the flame and the
but does not affect the nature of the coupling and leaves the steady solution unchange
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2. METHODOLOGY

The idea of the proposed method is to decelerate acoustic waves while keeping the
evolution of the flame unchanged. This is simply done by running the calculation at
artificially reduced pressuri@* = P/a?, wherex is the acceleration factor, without modi-
fying the temperature or the density (so that the equation of state nowPéadsr T /a?).
The corresponding sound spegd= ./y P*/p = c/a is therefore reduced, leading to a
greater CFL-based time stdp* = «dt. This is quite different from false-transient methods
where the pressure scaling appears only in the artificial pressure time-derivative term, ac
to the energy equation [5] (or the continuity equation in incompressible flows [3]), in ord
to allow the use of time-marching algorithms. The present scaling technique is closer to
method of [7], with the difference that we do not use the low-Mach number approximatic

IntroducingP* into the Navier—Stokes equations does not modify the continuity and me
fractions equations. On the other hand the momentum and pressure (or internal ene
equations take the form

3Ui _ _ 3Ui 012 aP* 1 3‘Cij
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wherer;;j is the stress tenso®, the viscous dissipation function, ai@lany other source
term (chemical heat release in combustion). It appears in these equations that simpl:
placing P by P* leads to a modified steady solution because of the scalirg o some
but not all terms of the right hand side (RHS). To avoid this we modify the RHS and sol
for the following reduced equations (combined with the non-modified continuity and me
fractions equations),
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so that
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Integrating this reduced system in time gives

do* = at dt* = adp, du* = (_8t> dt* =dU/a
dP* = idt* =dP/a, dy* = ﬂdt* =adY
ot ot

dT* = «2d P*/pr — o?dp*P*/p%r = adT.

The density, temperature, and mass fractions are advanced in time with an acceleration f
«, while the dynamics variablé$ and P are advanced in time with a deceleration faetor
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The steady state solution obtained with this reduced system is unchanged compared t
original system as only time derivatives have been modified (only the LHS terms for t
reduced momentum and pressure equations are scaletbpd compared to the original
terms). Finally, the modifications of the conservation equations to yield the reduced sys
are the following:

e Continuity, no modification

o Velocity, divide the convective term and the viscositydsdy

e Pressure, divide the viscosity, thermal conductivity, and source temai by
e Mass fraction, no modification.

Note that the equation of state must be modified too.

The maximum convergence acceleration will be obtained when the CFL time step
comes of the order of the other limiting time steps, namely the chemical time step and
Fourier time step. Note that there is no such limitation as low-Mach number or low dens
ratio, which is the case for low-Mach formulations, as long as only steady solutions «
looked for. The application of the proposed method to unsteady computations is howe
restricted to low-Mach number flows for which the speed of sound has a negligible impe

3. IMPLEMENTATION

Usually CFD compressible codes solve for density, momentum, total energy, and m
fractions in conservative dimensional or non-dimensional form. Due to the unchanc
continuity equation, the conservative form of the momentum equation introduces a r
term when using convergence acceleration, leading to

Ui \* 1 9pU;iU; oP* 1 075 1 0pUj
<,0|>:_,0|]_ i TIJ+(__1)UipJ

ot a2 0x ax  a?dx;  \a? 0x;

The total energy is calculated normalhg’ = e; + P*/(y — 1), and the total energy equa-
tion, in conservative form, can be directly written from the momentum and pressure eq
tions. We obtain

e\ " 1 9U; au; P* 1[0 aT U 7 :
() -3 3L )

ot @ 9x;  y—1 ax;  a?|ox \9x 9%
1 apU
-1 U'2 J
+( 2 ) L 0x

Note that the additional term in both equations is proportional to the divergence of mom
tum: this term can be omitted without perturbing the final steady solution.

The practical implementation is very simple: the only changes made to the code are
scaling of the convective terms in the momentum and energy equations and the modifice
of the equation of state. The diffusion and source terms in the energy and total ene
equations can be simply reduced by dividing the viscosity and thermal conductivity as wel
heat releas® by «?. For non-dimensional formulations, the diffusive terms are reduced k
multiplying the Reynolds number la?. Note that if the species diffusivities are calculated
through Schmidt numbers, these numbers have to be divided lsp that the product
Re- Scdoes not change. Finally one has to keep in mind that the calculations are don
a pressure level artificially lowered, which must be rescaled to get the true pressure leve
the final solution. Boundary conditions also have to be rescaled to adaptto the lower pres:¢
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FIG. 1. Configuration and reaction rate contours of the steady two-dimensional diffusion flame.

As the nature of the equations remains unchanged, the numerical discretization sche
and boundary conditions treatment can be applied without modification.

4. VALIDATION

Validation tests have been conducted using a finite volumes, unstructured code (AV
developed at CERFACS [8, 9]. One-dimensional and two-dimensional flames have b
calculated, with and without convergence acceleration.

A stationary, one-dimensional premixed methane—air flame was calculated with a c
vergence acceleration facief = 100, then compared to the standard calculation. Both fin:
steady solutions were extremely close, and it took about ten times less iterations to re
the same level of convergence (in terms of residuals).

We show here only the second test case, a two-dimensional stabilized diffusion fla
Figure 1 shows the configuration and the calculated steady solution. Three different stre
areinjected atinlet: a fuel stream, an oxidizer stream, and a hot products stream. The fla
stabilized by the hot stream, as shown in [10]. The simulation presented here was condL
on a 100x 200 grid, refined around the flame location. We used simple chemistry (only tv
species were computed), and an inlet velocity of 72 cm/s. For convergence acceleratio
have used? = 100. Residuals of the different variables are plotted versus time in Fig.
Both calculations correspond to the same number of iterations. The accelerated calcul:
goes much further in time than the standard calculation in the same number of iterations
time step is multiplied by 10): before 600 iterations the accelerated calculation has alre
seen the flame ignition (corresponding to the peak in all curves), whereas the stan
calculation is still in the phase where all profiles are only diffusing. The time evolutic
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FIG. 2. Log of the residuals of the conservative variables vs time non-dimensionalized with the acous

timeL/c.
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FIG. 3. Log of the residuals of the conservative variables vs the number of iterations.

of the residuals of density and mass fractions is unchanged, as we did not modify
corresponding equations. Residuals for momentum and energy behave quite differe
They can be understood by plotting them against the number of iterations (Fig. 3). T
last (600th) iteration of the standard computation corresponds to the same physical tim
the 60th iteration of the accelerated computation, so that residuals for all variables di
significantly after iteration 60. Before this point, and as expected from the derivation
the method, residuals for dynamic variables (momentum and energy) are smaller w
convergence acceleration (initially by a facédrfor energy andr for momentum), but the
slopes are the same: the gain is not here. However, residuals for density and mass frac
starting at the same level, drop much faster with the accelerated method.

5. CONCLUSION

We have shown that steady combustion simulations can be drastically acceleratet
modifying the characteristic time scale of the acoustics, while keeping the full compre
ible conservation equations. The implementation in codes is very simple and requires ¢
some minor modifications on the convective terms and the boundary conditions. Con
gence acceleration has been successfully obtained on one-dimensional and two-dimens
flame calculations, with a speed-up of the order of 10. In theory, typical speed-up can gc
to 100, which is the order of magnitude of the ratio of sound speed to usual flame spee
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